Do Now!

What happens if you mis-apply functions to the wrong kinds of values?
For instance, what if you give the caml constructor a string? What if you
send a number into each version of good? above?

2 Everything (We Will Say) About Parsing

Parsing is the act of turning an input character stream into a more structured, internal
representation. A common internal representation is as a tree, which programs can
recursively process. For instance, given the stream

23 +5 -6

we might want a tree representing addition whose left node represents the number 23
and whose right node represents subtraction of 6 from 5. A parser is responsible for
performing this transformation.

Parsing is a large, complex problem that is far from solved due to the difficulties of
ambiguity. For instance, an alternate parse tree for the above input expression might put
subtraction at the top and addition below it. We might also want to consider whether
this addition operation is commutative and hence whether the order of arguments can
be switched. Everything only gets much, much worse when we get to full-fledged
programming languages (to say nothing of natural languages).

2.1 A Lightweight, Built-In First Half of a Parser

These problems make parsing a worthy topic in its own right, and entire books, tools,
and courses are devoted to it. However, from our perspective parsing is mostly a dis-
traction, because we want to study the parts of programming languages that are not
parsing. We will therefore exploit a handy feature of Racket to manage the transfor-
mation of input streams into trees: read. read is tied to the parenthetical form of the
language, in that it parses fully (and hence unambiguously) parenthesized terms into
a built-in tree form. For instance, running (read) on the parenthesized form of the
above input—

(+ 23 (- 5 6))

—will produce a list, whose first element is the symbol ’+, second element is the
number 23, and third element is a list; this list’s first element is the symbol ’ -, second
element is the number 5, and third element is the number 6.

2.2 A Convenient Shortcut

As you know you need to test your programs extensively, which is hard to do when you
must manually type terms in over and over again. Fortunately, as you might expect, the
parenthetical syntax is integrated deeply into Racket through the mechanism of quota-
tion. That is, ’<expr>—which you saw a moment ago in the above example—acts as
if you had run (read) and typed <expr> at the prompt (and, of course, evaluates to
the value the (read) would have).

10



2.3 Types for Parsing

Actually, I’ve lied a little. I said that (read)—or equivalently, using quotation—will
produce a list, etc. That’s true in regular Racket, but in Typed PLAI, the type it returns
a distinct type called an s-expression, written in Typed PLAI as s-expression:

> (read)

- s-expression

[type in (+ 23 (- 5 6))]

>(+ 23 (- 5 6))

Racket has a very rich language of s-expressions (it even has notation to represent
cyclic structures), but we will use only the simple fragment of it.

In the typed language, an s-expression is treated distinctly from the other types,
such as numbers and lists. Underneath, an s-expression is a large recursive datatype that
consists of all the base printable values—numbers, strings, symbols, and so on—and
printable collections (lists, vectors, etc.) of s-expressions. As a result, base types like
numbers, symbols, and strings are both their own type and an instance of s-expression.
Typing such data can be fairly problematic, as we will discuss later [REF].

Typed PLAI takes a simple approach. When written on their own, values like num-
bers are of those respective types. But when written inside a complex s-expression—in
particular, as created by read or quotation—they have type s-expression. You have
to then cast them to their native types. For instance:
> 0+
- symbol
)+
> (define 1 ’(+ 1 2))
>1
- s-expression
(+ 1 2)
> (first 1)

. typecheck failed: (listof ’_a) vs s-expression in:
first
(quote (+ 1 2))
1
first
> (define f (first (s-exp->list 1)))
> f
- s-expression
2+
This is similar to the casting that a Java programmer would have to insert. We will
study casting itself later [REF].

Observe that the first element of the list is still not treated by the type checker as a
symbol: a list-shaped s-expression is a list of s-expressions. Thus,
> (symbol->string f)

. typecheck failed: symbol vs s-expression in:
symbol->string
f

11



symbol->string

f

first

(first (s-exp->list 1))

s-exp->list
whereas again, casting does the trick:
> (symbol->string (s-exp->symbol f))
- string
n + "
The need to cast s-expressions is a bit of a nuisance, but some complexity is unavoid-
able because of what we’re trying to accomplish: to convert an untyped input stream
into a typed output stream through robustly fyped means. Somehow we have to make
explicit our assumptions about that input stream.

Fortunately we will use s-expressions only in our parser, and our goal is to get away

from parsing as quickly as possible! Indeed, if anything this should be inducement to
get away even quicker.

2.4 Completing the Parser

In principle, we can think of read as a complete parser. However, its output is generic:
it represents the token structure without offering any comment on its intent. We would
instead prefer to have a representation that tells us something about the intended mean-
ing of the terms in our language, just as we wrote at the very beginning: “representing
addition”, “represents a number”’, and so on.

To do this, we must first introduce a datatype that captures this representation. We
will separately discuss (section 3.1) how and why we obtained this datatype, but for

now let’s say it’s given to us:

(define-type ArithC
[numC (n : number)]
[plusC (1 : ArithC) (r : ArithC)]
[multC (1 : ArithC) (r : ArithC)1)

We now need a function that will convert s-expressions into instances of this datatype.
This is the other half of our parser:

(define (parse [s : s-expression]) : ArithC
(cond

[(s-exp-number? s) (numC (s-exp->number s))]

[(s-exp-list? s)

(let ([sl (s-exp->list s)])

(case (s-exp->symbol (first sl))

[(+) (plusC (parse (second sl)) (parse (third sl)))]
[(*) (multC (parse (second sl)) (parse (third sl)))]
[else (error ’parse "invalid list input")]))]

[else (error ’parse "invalid input")]))

12



Thus:
> (parse ’(+ (x 1 2) (+ 2 3)))
- ArithC
(plusC
(multC (numC 1) (numC 2))
(plusC (numC 2) (numC 3)))

Congratulations! You have just completed your first representation of a program.
From now on we can focus entirely on programs represented as recursive trees, ignoring
the vagaries of surface syntax and how to get them into the tree form. We’re finally
ready to start studying programming languages!

Exercise

What happens if you forget to quote the argument to the parser? Why?

2.5 Coda

Racket’s syntax, which it inherits from Scheme and Lisp, is controversial. Observe,
however, something deeply valuable that we get from it. While parsing traditional lan-
guages can be very complex, parsing this syntax is virtually trivial. Given a sequence of
tokens corresponding to the input, it is absolutely straightforward to turn parenthesized
sequences into s-expressions; it is equally straightforward (as we see above) to turn s-
expressions into proper syntax trees. I like to call such two-level languages bicameral,
in loose analogy to government legislative houses: the lower-level does rudimentary
well-formedness checking, while the upper-level does deeper validity checking. (We
haven’t done any of the latter yet, but we will [REF].)

The virtues of this syntax are thus manifold. The amount of code it requires is
small, and can easily be embedded in many contexts. By integrating the syntax into
the language, it becomes easy for programs to manipulate representations of programs
(as we will see more of in [REF]). It’s therefore no surprise that even though many
Lisp-based syntaxes have had wildly different semantics, they all share this syntactic
legacy.

Of course, we could just use XML instead. That would be much better. Or JSON.
Because that wouldn’t be anything like an s-expression at all.

3 A First Look at Interpretation

Now that we have a representation of programs, there are many ways in which we might
want to manipulate them. We might want to display a program in an attractive way
(“pretty-print”), convert into code in some other format (“compilation”), ask whether
it obeys certain properties (“verification”), and so on. For now, we’re going to focus
on asking what value it corresponds to (“evaluation”—the reduction of programs to
values).

Let’s write an evaluator, in the form of an interpreter, for our arithmetic language.
We choose arithmetic first for three reasons: (a) you already know how it works, so we
can focus on the mechanics of writing evaluators; (b) it’s contained in every language

13



